An optimal substrate design for SERS: dual-scale diamond-shaped gold nano-structures fabricated via interference lithography.
نویسندگان
چکیده
Dual-scale diamond-shaped gold nanostructures (d-DGNs) with larger scale diamond-shaped gold nanoposts (DGNs) coupled to smaller scale gold nanoparticles have been fabricated via interference lithography as a highly reliable and efficient substrate for surface enhanced Raman scattering (SERS). The inter- and intra-particle plasmonic fields of d-DGNs are varied by changing the periodicity of the DGNs and the density of gold nanoparticles. Because of the two different length scales in the nanostructures, d-DGNs show multipole plasmonic peaks as well as dipolar plasmonic peaks, leading to a SERS enhancement factor of greater than 10(9). Simulations are carried out by finite-difference time-domain (FDTD) methods to evaluate the dependence of the inter- and intra-particle plasmonic field and the results are in good agreement with the experimentally obtained data. Our studies reveal that the combination of two different length scales is a straightforward approach for achieving reproducible and great SERS enhancement by light trapping in the diamond-shaped larger scale structures as well as efficient collective plasmon oscillation in the small size particles.
منابع مشابه
Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS).
Deterministic Aperiodic (DA) arrays of gold (Au) nanoparticles are proposed as a novel approach for the engineering of reproducible surface enhanced Raman scattering (SERS) substrates. A set of DA and periodic arrays of cylindrical and triangular Au nanoparticles with diameters ranging between 50-110 nm and inter-particle separations between 25-100 nm were fabricated by e-beam lithography on qu...
متن کاملMicro- and nanopatterning of inorganic and polymeric substrates by indentation lithography.
This paper describes the use of a nanoindenter, equipped with a diamond tip, to form patterns of indentations on planar substrates (epoxy, silicon, and SiO(2)). The process is called "Indentation Lithography" (IndL). The indentations have the form of pits and furrows, whose cross-sectional profiles are determined by the shapes of the diamond indenters, and whose dimensions are determined by the...
متن کاملQuasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere lithography.
Large-scale ordered arrays with dense hot spots are highly desirable substrates for practical applications such as surface-enhanced Raman scattering (SERS). In the past decade, most work has focused on using lateral gaps between two metal structures. However, the strength and density of the generated hot spots are limited to a 2D arrangement of nanostructures. In this work, we present a novel q...
متن کاملFabrication and Optical Characterization of Silicon Nanostructure Arrays by Laser Interference Lithography and Metal-Assisted Chemical Etching
In this paper metal-assisted chemical etching has been applied to pattern porous silicon regions and silicon nanohole arrays in submicron period simply by using positive photoresist as a mask layer. In order to define silicon nanostructures, Metal-assisted chemical etching (MaCE) was carried out with silver catalyst. Provided solution (or materiel) in combination with laser interference lithogr...
متن کاملNano-patterned SERS substrate: application for protein analysis vs. temperature.
We have illustrated the fabrication of nano-structures as a surface enhanced Raman scattering (SERS) substrate using electro-plating and electron-beam lithography techniques to obtain an array of gold nanograin-aggregate structures of diameter ranging between 80 and 100 nm with interstitial gap of 10-30 nm. The nanostructure based SERS substrate permits us to have better control and reproducibi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 5 5 شماره
صفحات -
تاریخ انتشار 2013